

Client

Arvida Labs

1291 NW 65th PL Unit B

Fort Lauderdale, FL 33309

1 of 7

24005001022615

Sample ID: SA-240206-34507 Batch: 21 - Liquid Diamonds - 2ml cartridge - Blue Dream Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 02/07/2024 Completed: 03/14/2024

0.119 %	80.1 %	93.8 %	Not Tested	Not Tested	Yes
<u> </u> 29-ТНС	∆8-THC	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard Normalization

Cannabinoids by HPLC-PDA and GC-MS/MS

Analyte	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)	
СВС	0.0095	0.0284	ND	ND	
CBCV	0.006	0.018	ND	ND	91,000,000)
CBD	0.0081	0.0242	ND	ND	
CBDV	0.0061	0.0182	ND	ND	Delta8-1HC
CBL	0.0112	0.0335	ND	ND	3.
CBN	0.0056	0.0169	1.10	11.0	32 tanda
CBT	0.018	0.054	ND	ND	25-
∆8-THC	0.0104	0.0312	80.1	801	
∆8-THCV	0.0067	0.02	ND	ND	all HHC
Δ9-THC	0.0076	0.0227	0.119	1.19	
Δ9-THCA	0.0084	0.0251	7.96	79.6	and
Δ9-THCV	0.0069	0.0206	ND	ND	((a.R. JOPF) ((a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (a.R. JOPF) (b.R. JOPF) (b.R
exo-THC	0.0067	0.02	0.120	1.20	0.0 ⁻¹ 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 18.0 20.0
(6aR,9R,10aR)-HHC	0.0067	0.02 <	2.37	23.7	
(6aR,9S,10aR)-HHC	0.0067	0.02	1.98	19.8	
Total Δ9-THC			7.10	71.0	
Total			93.8	938	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THC * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 03/18/2024

Tested By: Scott Caudill Laboratory Manager Date: 02/12/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

24005001022615

Sample ID: SA-240206- Batch: 21 - Liquid Diam Dream Type: Finished Product Matrix: Concentrate - D Unit Mass (g):	onds - 2ml cartridge - Blue - Inhalable	ceived: 02/07/2024 mpleted: 03/14/2024	Client Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA
Heavy Metals		LOO (ppm)	Result (ppm)
Heavy Metals Analyte Arsenic	by ICP-MS LOD (ppm)	LOQ (ppm) 0.02	Result (ppm)
Analyte	LOD (ppm)	0.02	Result (ppm) ND ND
Analyte Arsenic	LOD (ppm) 0.002		ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/18/2024

Tested By: Chris Farman

Tested By: Chris Farmar Scientist Date: 03/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

3 of 7

24005001022615

Sample ID: SA-240206-34507 Batch: 21 - Liquid Diamonds - 2ml cartridge - Blue Dream Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 02/07/2024 Completed: 03/14/2024 **Client** Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA

Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	<loq< td=""><td>Methomyl</td><td>30</td><td>100</td><td>ND</td></loq<>	Methomyl	30	100	ND
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Daminozide	30	100	ND	Prallethrin	30	100	ND
Diazinon	30	100	ND	Propiconazole	30	100	ND
Dichlorvos	30	100	ND	Propoxur	30	100	ND
Dimethoate	30	100	ND	Pyrethrins	30	100	ND
Dimethomorph	30	100	ND	Pyridaben	30	100	ND
Ethoprophos	30	100	ND	Spinetoram	30	100	ND
Etofenprox	30 <	100	ND	Spinosad	30	100	ND
Etoxazole	30	100	ND	Spiromesifen	30	100	ND
Fenhexamid	30	100	ND	Spirotetramat	30	100	ND
Fenoxycarb	30	100	ND	Spiroxamine	30	100	ND
Fenpyroximate	30	100	ND	Tebuconazole	30	100	ND
Fipronil	30 <	100	ND	Thiacloprid	30	100	ND
Flonicamid	30	100	ND	Thiamethoxam	30	100	ND
Fludioxonil	30	100	ND	Trifloxystrobin	30	100	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/18/2024

Tested By: Anthony Mattingly Scientist Date: 03/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

24005001022615

Sample ID: SA-240206-34 Batch: 21 - Liquid Diamon Dream Type: Finished Product - I Matrix: Concentrate - Dist Unit Mass (g):	ids - 2ml cartridge - Blu nhalable	Received: 02/07/2024 Completed: 03/14/2024	
Mycotoxins by L Analyte	.C-MS/MS	LOQ (ppb)	Result (ppb)
		LOQ (ppb) 5	Result (ppb)
Analyte		LOQ (ppb) 5 5	
Analyte B1		LOQ (ppb) 5 5 5 5	ND
Analyte B1 B2		LOQ (ppb) 5 5 5 5 5 5 5	ND ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/18/2024

Tested By: Anthony Mattingly Scientist

Date: 03/18/2024 Date: 03/13/2024
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

24005001022615

Sample ID: SA-240206-34507 Batch: 21 - Liquid Diamonds - 2ml cartridge - Bl Dream Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):	ue Received: 02/07/2024 Completed: 03/14/2024	Client Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA
Microbials by PCR and Platin	g	
Analyte	OD (CFU/g) Result (CFU/g)	Result (Qualitative)

Total aerobic count	10	ND		
Total coliforms	10	ND		
Generic E. coli	10	ND		
Salmonella spp.	1		Not Detected per 1 gram	
Shiga-toxin producing E. coli (STEC)	1		Not Detected per 1 gram	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 03/18/2024

Vade Rinuston

Tested By: Jade Pinkston Microbiology Technician Date: 03/12/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

6 of 7

24005001022615

Sample ID: SA-240206-34507 Batch: 21 - Liquid Diamonds - 2ml cartridge - Blue Dream Type: Finished Product - Inhalable Matrix: Concentrate - Distillate Unit Mass (g):

Received: 02/07/2024 Completed: 03/14/2024 Client Arvida Labs 1291 NW 65th PL Unit B Fort Lauderdale, FL 33309 USA

Residual Solvents by HS-GC-MS

	LOD	LOQ	Result		LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	ND
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	ND	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 03/18/2024

Tested By: Kelsey Rogers Scientist

Date: 03/13/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

24005001022615

Sample ID: SA-240206-34507 Client Batch: 21 - Liquid Diamonds - 2ml cartridge - Blue Arvida Labs Received: 02/07/2024 Dream 1291 NW 65th PL Unit B Completed: 03/14/2024 Type: Finished Product - Inhalable Fort Lauderdale, FL 33309 Matrix: Concentrate - Distillate USA Unit Mass (g): **Catalyst Metals** Analyte Result Unit LOD LOQ Palladium (Pd) ND 0.003 0.01 ppm Platinum (Pt) ND 0.003 0.01 ppm Rhodium (Rh) ND 0.003 0.01 ppm Ruthenium (Ru) 0.003 ND ppm 0.01 Nickel (Ni) ND 0.0167 0.05 ppm Generated By: Ryan Bellone Tested By: Chris Farman Scientist CCO Date: 03/18/2024 Date: 03/14/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories KCA Laboratories and provide measurement uncertainty upon request.